17 research outputs found

    MAC Aspects of Millimeter-Wave Cellular Networks

    Get PDF
    The current demands for extremely high data rate wireless services and the spectrum scarcity at the sub-6 GHz bands are forcefully motivating the use of the millimeter-wave (mmWave) frequencies. MmWave communications are characterized by severe attenuation, sparse-scattering environment, large bandwidth, high penetration loss, beamforming with massive antenna arrays, and possible noise-limited operation. These characteristics imply a major difference with respect to legacy communication technologies, primarily designed for the sub-6 GHz bands, and are posing major design challenges on medium access control (MAC) layer. This book chapter discusses key MAC layer issues at the initial access and mobility management (e.g., synchronization, random access, and handover) as well as resource allocation (interference management, scheduling, and association). The chapter provides an integrated view on MAC layer issues for cellular networks and reviews the main challenges and trade-offs and the state-of-the-art proposals to address them

    Interplay between Distributed AI Workflow and URLLC

    Full text link
    Distributed artificial intelligence (AI) has recently accomplished tremendous breakthroughs in various communication services, ranging from fault-tolerant factory automation to smart cities. When distributed learning is run over a set of wireless connected devices, random channel fluctuations, and the incumbent services simultaneously running on the same network affect the performance of distributed learning. In this paper, we investigate the interplay between distributed AI workflow and ultra-reliable low latency communication (URLLC) services running concurrently over a network. Using 3GPP compliant simulations in a factory automation use case, we show the impact of various distributed AI settings (e.g., model size and the number of participating devices) on the convergence time of distributed AI and the application layer performance of URLLC. Unless we leverage the existing 5G-NR quality of service handling mechanisms to separate the traffic from the two services, our simulation results show that the impact of distributed AI on the availability of the URLLC devices is significant. Moreover, with proper setting of distributed AI (e.g., proper user selection), we can substantially reduce network resource utilization, leading to lower latency for distributed AI and higher availability for the URLLC users. Our results provide important insights for future 6G and AI standardization.Comment: Accepted in 2022 IEEE Global Communications Conference (GLOBECOM

    Low-latency Networking: Where Latency Lurks and How to Tame It

    Full text link
    While the current generation of mobile and fixed communication networks has been standardized for mobile broadband services, the next generation is driven by the vision of the Internet of Things and mission critical communication services requiring latency in the order of milliseconds or sub-milliseconds. However, these new stringent requirements have a large technical impact on the design of all layers of the communication protocol stack. The cross layer interactions are complex due to the multiple design principles and technologies that contribute to the layers' design and fundamental performance limitations. We will be able to develop low-latency networks only if we address the problem of these complex interactions from the new point of view of sub-milliseconds latency. In this article, we propose a holistic analysis and classification of the main design principles and enabling technologies that will make it possible to deploy low-latency wireless communication networks. We argue that these design principles and enabling technologies must be carefully orchestrated to meet the stringent requirements and to manage the inherent trade-offs between low latency and traditional performance metrics. We also review currently ongoing standardization activities in prominent standards associations, and discuss open problems for future research
    corecore